Utilizing Data Analytics To Identify Fraud Potential: An Internal Auditor's Perspective
Main Article Content
Abstract
Research Aims: This research aims to analyze the influence of Data Analytics on the detection of potential fraud.
Design/methodology/approach: The methodology used is Structural Equation Modeling-Partial Least Squares (SEM-PLS) with data collected through questionnaires distributed to respondents, namely internal auditors who work in South Sumatra Province and Bangka Belitung Province.
Research Findings: The research results show that Descriptive Analytics and Diagnostic Analytics have a significant influence on fraud detection and prevention, while Predictive Analytics and Prescriptive Analytics do not show a significant influence. These findings indicate that internal auditors are more effective in using descriptive and diagnostic analytics in fraud detection efforts, while the application of predictive and prescriptive analytics is still limited.
Theoretical Contribution/Originality: The theoretical contribution of this research is to enrich the literature regarding the role of data analytics in fraud prevention, especially in the context of internal auditors in Indonesia. This research also provides insight into the importance of developing the capacity of internal auditors in using data analytics to increase the effectiveness of fraud monitoring and detection systems in organizations.
Keywords: Data Analytics, Internal Auditor, Fraud
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World From Edge to Core,” 2018.
D. Zhang et al., “Understanding fraudulent returns and mitigation strategies in multichannel retailing,” Journal of Retailing and Consumer Services, vol. 70, no. July 2022, p. 103145, 2023, doi: 10.1016/j.jretconser.2022.103145.
E. Rahmawati and et al, “Pengaruh Akuntabiltas, Budaya Organisasi, Sistem Pengendalian Internal, dan Whistleblowing Terhadap Pencegahan Fraud dalam Pengelolaan Dana Desa,” Journal of Law and Business, vol. 1, no. 1, pp. 1–8, 2023.
N. Monica, A. Putri, R. Afrilyani, and R. Haryanti, “Analisis Kecurangan Laporan Keuangan PT Asuransi Jiwasraya dengan Analisis Fraud Pentagon Info Artikel ABSTRAK,” Sanskara Akuntansi dan Keuangan, vol. 1, no. 02, pp. 92–99, 2023.
Hermiyetti, “TOWARDS THE FUTURE: DIGITAL TRANSFORMATION IN INDONESIAN BANKING AND ITS IMPLICATIONS FOR ECONOMIC GROWTH AND PUBLIC PROSPERITY,” International Journal of Economic Literature (INJOLE), vol. 2, no. 2, pp. 505–520, 2024.
ICW, “Tren Penindakan Kasus Korupsi Tahun 2023.” [Online]. Available: https://www.icw.or.id/id/tren-penindakan-kasus-korupsi-tahun-2023
ACFE Indonesia, “No Title,” 2023.
D. E. Prasetyo, G. A. A. Wulandari, Z. Meini, and Fauziah, “Identifikasi Fraud Dalam Pemeriksaan Internal Melalui Data Analytics,” Jurnal EQUITY, vol. 26, no. 1, pp. 78–98, 2023, doi: 10.34209/equ.v26i1.7418.
A. Gepp, M. K. Linnenluecke, T. J. O’Neil, and T. Smith, “Big data techniques in auditing research and practice: Current trends and future opportunities,” 2018.
K. Singh and P. Best, “Anti-money laundering: Using data visualization to identify suspicious activity,” 2019.
Deloitte, “No Title.” [Online]. Available: https://www2.deloitte.com/us/en.html
P. Lois and G. A. Drogalas, “Internal audits in the digital era: opportunities risks and challenges,” 2020.
I. E. Kumar, I. D. Raji, A. Horowitz, and A. Selbst, “The Fallacy of AI Functionality,” ACM International Conference Proceeding Series, pp. 959–972, 2022, doi: 10.1145/3531146.3533158.
S. A. Faradiza, “Fraud Pentagon Dan Kecurangan Laporan Keuangan,” EkBis: Jurnal Ekonomi dan Bisnis, vol. 2, no. 1, p. 1, 2019, doi: 10.14421/ekbis.2018.2.1.1060.
Chartered Institute of Public Finance Accountancy (CIPFA)., “The Investigation of Fraud in the Public Sector (12th ed.).”
L. Suprajadi, “Teori Kecurangan, Fraad Awareness, Dan Metodologi Untuk Mendeteksi Kecurangan Pelaporan Keuangan,” Bina Ekonomi Majalah Ilmiah, vol. 13, no. 2, pp. 52–58, 2009.
A. I. N. A. Anisa and N. Novita, “Penggunaan Data Analytics Terhadap Peningkatan Deteksi Kecurangan Pada Pemeriksaan Eksternal,” Journal of Economic, Management, Accounting and Technology, vol. 6, no. 1, pp. 34–45, 2023, doi: 10.32500/jematech.v6i1.3435.
P. Ghavami, Big data management: Data governance principles for big data analytics. Walter de Gruyter GmbH & Co KG.No Title. 2020.
Dimitris Balios, Panagiotis Kotsilaras, Nikolaos Eriotis, and Dimitrios Vasiliou, “Big Data, Data Analytics and External Auditing,” Journal of Modern Accounting and Auditing, vol. 16, no. 5, pp. 211–219, 2020, doi: 10.17265/1548-6583/2020.05.002.
D. M. Elisabeth, “Kajian terhadap peranan teknologi informasi dalam perkembangan audit komputerisasi (Studi kajian teoritis),” METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 3, no. 1, pp. 40–53, 2019.
A. P. Utami, “Peran Audit Internal Atas Kualitas Pemeriksaan Laporan Keuangan Serta Hubungan Kinerja Audit Internal Dengan Oleh Audit Eksternal Pada Sebuah Perusahaan,” Jurnal Ekonomi,(Online), vol. 7, no. 1, pp. 74–81, diakses 15 April 2024, 2021.
Sugiyono, Metode Penelitian Kuantitatif. 2018.
S. S. Halbouni, N. Obeid, and A. Garbou, “Corporate governance and information technology in fraud prevention and detection: Evidence from the UAE,” 2016.
D. R. Cooper and P. Schindler, Business research methods. 2014.
J. F. Hair, L. M. Matthews, R. L. Matthews, and M. Sarstedt, “Updated guidelines on which method to use,” International Journal of Multivariate Data Analysis, vol. 1, no. 2, p. 107, 2017.
M. Sarstedt, C. M. Ringle, J. H. Cheah, H. Ting, O. I. Moisescu, and L. Radomir, “Structural model robustness checks in PLS-SEM,” Tourism Economics, vol. 26, no. 4, pp. 531–554, 2020, doi: 10.1177/1354816618823921.
K. K. K.-K. Wong, “28/05 - Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS,” Marketing Bulletin, vol. 24, no. 1, pp. 1–32, 2013.
Sugiyono, Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: CV. Alfabeta., 2017.
W. Chin and G. Marcoulides, “The Partial Least Squares Approach to Structural Equation Modeling,” Modern Methods for Business Research, vol. 8, Jan. 1998.
J. F. Hair Jr, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis. 2014.
Imam. Ghozali, Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Badan Penerbit Universitas Diponegoro: Semarang, 2018.
L. Wang and C. A. Alexander, “Big Data Driven Supply Chain Management and Business Administration. American,” Journal of Economics and Business Administration., vol. 7, pp. 60–67., 2015.
A. Gabriel, P. Bagus, and D. Howden, “On the necessary and sufficient conditions for legitimate banking contracts,” 2018.
N. M. Alsharari et al., “Alsharari, N. M., Alomari, A., & Alnesafi, A. (2020). Costs allocation practices and operations management in the hotels’ industry: evidence from UAE. International Journal of Innovation, Creativity, and Change, 14(5), 512-545.,” vol. 14, no. 5, pp. 512–545, 2020.
J. Zhu, F. Xu, H. Uszkoreit, Y. Du, W. Fan, and D. Zhao, “Explainable AI: A Brief Survey on History, Research Areas, Approaches and Challenges,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11839 LNAI, no. September, pp. 563–574, 2019, doi: 10.1007/978-3-030-32236-6_51.
Z. X. Chen, L. Hohmann, B. A., Z. B., D. Y., and S. C. Westrick, “Recommendations to protect patients and health care practices from Medicare and Medicaid fraud.,” J Am Pharm Assoc (2003), 2020.
P. Gupta, “Securing Tomorrow: The Intersection of AI, Data, and Analytics in Fraud Prevention,” Asian Journal of Research in Computer Science, vol. 17, no. 3, pp. 75–92, 2024, doi: 10.9734/ajrcos/2024/v17i3425.
C. J. Lee, R. Wang, S. C. Hsu, S. Zheng, and J. H. Chen, “Effects of career horizon and corporate governance in China’s construction industry: Multilevel study of top management fraud,” 2020.
KPMG, “Laporan Transparansi 2021.” [Online]. Available: https://kpmg.com/id/en/home/insights/2022/06/id-2021-transparency-report.html
I. F. P. Pertiwi, I. N. Prasasti, and Z. Fahma, “Pengaruh Dukungan Organisasi Menjembatani Faktor Internal dalam Individu ke Intensi Tindakan Whistleblowing,” INFERENSI J. Penelit. Sos. Keagamaan, vol. 11, no. 2, pp. 391–408, 2018, doi: 10.18326/infsl3.v11i2.391-408.
Putri Pertiwi, I. F., Kusuma, H., Hadi, K., Arifin, J., Yoga, I., & Zakky Fahma, A. (2022). Isomorphism of integrated reporting’s sustainability embeddedness: evidence from Indonesian listed companies. Cogent Business & Management, 9(1). https://doi.org/10.1080/23311975.2022.2099605